Тригонометрические формулы

Значение-тригонометрических-функций-некоторых-углов

Тригонометрические формулы — элементарные функции, которые выражают зависимость всех сторон прямоугольного треугольника от острых углов при гипотенузе (или зависимость хорд и высот от его центрального угла в круге).

Тригонометрия — наука, которая изучает свойства тригонометрических формул (trigwnon — треугольник, а metrew — измеряю).

К прямым функциям тригонометрии относят: sin x (синус), cos x (косинус). К производным: tg x (тангенс), ctg x (котангенс). А также другие тригонометрические функции: sec x (секанс) и cosec x (косеканс).

Косинус и синус в тригонометрии являются Вещественнозначными функциями, которые неограниченно дифференцируются и являются периодически непрерывными. Остальные же наоборот дифференцируются в области определении, однако, как и прямые тригонометрические функции есть непрерывными.

Значения функция для некоторых углов представлены в следующей таблице. Обозначение «∞» говорит о том, что функция в данной точке не определена и стремится к бесконечности.

Основные тригонометрические тождества:

«То, что принято без доказательств, может быть отвергнуто без доказательств».
Евклид.
  1. При известном синусе или косинусе числа можно найти его тангенс или котангенс: tg a = sin a/cos a
  2. Можно найти синус числа, если известен его косинус и наоборот: sin2 a + cos2 a = 1
  3. Найти тангенс можно через синус при известном косинусе: 1 + tg2 a = 1/cos2 a
  4. Найти котангенс можно через синус при известном косинусе: 1 + 1/tg2 a = 1/sin2
  5. sin(90o – a ) = cos a
  6. cos(90o – a ) = sin a   

Формулы двойного аргумента позволяют выразить sin2x, cos2x, tg2x через tg x, cos x и sin x. Соответственно формулы тройного аргумента выражают sin2x, cos2x, tg2x. Всем известно, что любая формула в математике может применяться не только слева на право, но и наоборот. В тригонометрии это действует во время преобразования суммы в произведение или же при переходе от произведения к сумме.

Переход от произведения к сумме:

Переход от произведения к сумме1

Переход от произведения к сумме2

Переход от произведения к сумме3

Переход от суммы к произведению:

Переход от суммы к произведению

Возникновение тригонометрии и тригонометрических формул связанно с астрономией, строительным делом и землемерием. Не смотря на то, что некоторые факты и понятия были

astronom_old

известны еще две тысячи лет назад, сам термин тригонометрия появился относительно недавно. Впервые способ решать зависимости между сторонами треугольника нашли Гиппарх и Клавдий Птолемеи (ІІ н.е.). Только намного позже эти зависимости стали называть тригонометрическими формулами.